incerto.bayesian.LaplaceApproximation#
- class incerto.bayesian.LaplaceApproximation(model, likelihood='classification', prior_precision=1.0, num_samples=20)[source]#
Bases:
ModuleLaplace Approximation for Bayesian Neural Networks.
Approximates the posterior over weights using a Gaussian centered at the MAP estimate (trained weights) with covariance derived from the Hessian of the loss function.
- Reference:
MacKay, “A Practical Bayesian Framework for Backpropagation Networks” (1992) Daxberger et al., “Laplace Redux” (NeurIPS 2021)
- Parameters:
Example
>>> model = ResNet18(num_classes=10) >>> # Train model to convergence >>> train_model(model, train_loader) >>> laplace = LaplaceApproximation(model, likelihood='classification') >>> laplace.fit(train_loader) >>> mean, variance = laplace.predict(x)
- Parameters:
num_samples (
int)
- __init__(model, likelihood='classification', prior_precision=1.0, num_samples=20)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(model[, likelihood, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
fit(data_loader[, device])Fit Laplace approximation by computing Hessian.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(*input)Define the computation performed at every call.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
predict(x)Laplace prediction with uncertainty.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining- __init__(model, likelihood='classification', prior_precision=1.0, num_samples=20)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- fit(data_loader, device='cuda')[source]#
Fit Laplace approximation by computing Hessian.
- Parameters:
data_loader (
DataLoader) – Data loader for computing Hessiandevice (
str) – Device to use