incerto.calibration.BetaCalibrator#
- class incerto.calibration.BetaCalibrator(method='mle')[source]#
Bases:
BaseCalibratorBeta Calibration for binary classification (Kull et al., 2017).
Fits a Beta distribution to map uncalibrated probabilities to calibrated probabilities. More flexible than Platt scaling.
- Reference:
Kull et al., “Beta calibration: a well-founded and easily implemented improvement on logistic calibration” (AISTATS 2017)
- Parameters:
method (
str) – Fitting method (‘mle’ or ‘map’)
Methods
__init__([method])fit(logits, labels)Fit Beta calibration on binary classification data.
load(path)Load a calibrator from a file.
load_state_dict(state)Load Beta calibrator state.
predict(logits)Get calibrated predictions.
save(path)Save calibrator state to a file.
Save Beta calibrator state.
- fit(logits, labels)[source]#
Fit Beta calibration on binary classification data. Falls back to isotonic regression for multiclass.