Conformal Prediction#

The conformal prediction module provides distribution-free uncertainty quantification with finite-sample coverage guarantees.

Classification Methods#

inductive_conformal(model, calib_loader, alpha)

Classical Inductive Conformal Prediction (ICP) — Vovk, Gammerman, and Shafer, Algorithmic Learning in a Random World (2005).

mondrian_conformal(model, calib_loader, alpha)

Mondrian Conformal Prediction — Papadopoulos, Reliable Classification with Conformal Predictors (2008).

aps(model, calib_loader, alpha)

Adaptive Prediction Sets (APS) — Romano, Patterson, and Candes, NeurIPS 2020.

raps(model, calib_loader, alpha[, lam, k_reg])

Regularized APS (RAPS) — Tsesmelis et al., ICML 2021.

Regression Methods#

jackknife_plus(model_fn, train_dataset, alpha)

Jackknife+ Intervals — Barber, Candès, and Ramdas, *Ann.

cv_plus(model_fn, train_dataset, folds, alpha)

Cross-Validation+ Intervals (CV+) — Barber et al., JASA 2021.

conformalized_quantile_regression(...[, ...])

Conformalized Quantile Regression (CQR) — Romano, Patterson, and Candes, NeurIPS 2019.

Metrics#

empirical_coverage(y, sets)

Fraction of test examples where y_i ∈ Ŝ_i.

average_set_size(sets)

conditional_coverage(y, sets, groups)

Coverage conditioned on groups (e.g., class labels).

Visualization#