Selective Prediction

Selective Prediction#

The selective prediction module enables models to abstain from predictions when uncertain, providing risk-coverage tradeoffs.

Methods#

SoftmaxThreshold(backbone)

Classical confidence-thresholding à la Chow (1957).

SelfAdaptiveTraining(backbone, num_classes)

Self-Adaptive Training for better calibration and selective prediction.

DeepGambler(backbone, num_classes)

Add an extra abstain logit and train with the gambler's loss:

SelectiveNet(backbone, num_classes[, ...])

Implementation of SelectiveNet (Geifman & El-Yaniv, 2019). The model outputs: * h(x): class logits * g(x): selection probability.

Metrics#

aurc(sorted_conf, sorted_errors)

Area under the Risk-Coverage curve.

Visualization#